
















Selecting the base‐edited cells from massive transformed
calli for regeneration is time‐consuming and labor‐intensive







degradation of the 3′ extension, and eventually improving the
efficiency of prime editing by 3‐ to 4‐fold in human cells without
increasing off‐target editing activity (Nelson et al., 2022) (Figure
3D, E). Extension of this strategy in plants significantly en-
hanced prime editing efficiency (Jiang et al., 2022b; Li et al.,
2022b; Zou et al., 2022) (Table 2). In addition, MS2‐based PE
(MS2‐PE) has also been developed to improve the prime editing
efficiency by using RNA aptamers (MS2 and f6) in pegRNA and
fusion of their binding protein MCP with the PE2 system (Figure
3F), and achieved up to 10.1‐fold increase in editing efficiency
at five of six targets in transgenic rice lines (Chai et al., 2021).

While canonical PEs mainly enable base conversions and
installation of small indels (Anzalone et al., 2019), development
of PE capable of knock‐in or replacement of large DNA frag-
ments is highly desirable either for gene therapy or crop im-
provement. Recently, several powerful strategies have been
developed to precisely replace, insert, and delete large DNA
fragments in human cells, including twinPE (Anzalone et al.,
2022) (Figure 2H), GRAND editing (Wang et al., 2022c) (Figure
2H), PRIME‐Del (a prime editing‐based method, which induces
a deletion using a pair of pegRNAs that target opposite DNA
strands) (Choi et al., 2022), and PEDAR (PE‐Cas9‐based

Figure 3. Optimizations of different prime editing guide RNAs (pegRNAs)
(A) The schematic diagram of a canonical pegRNA. A pegRNA is composed of three components, including a single‐guide RNA (sgRNA) targeting the specific
site, a reverse transcriptase (RT) template (RTT) encoding the desired edit, and a primer binding site (PBS) initiating RT. The RTT sequence is highlighted in
red, the PBS sequence is highlighted in blue, and the spacer sequence is highlighted in dark red. (B) The schematic diagram of apegRNA, which has a C/G
pair at the bottom of the small hairpin. The C/G base pair is highlighted in purple. (C) The schematic diagram of a Csy4‐processed pegRNA, which protects the
3′ extension from degradation by exonucleases. Csy4 is a specialized ribonuclease that selects clustered regularly interspaced short palindromic repeats
(CRISPR) transcripts from the cellular milieu for binding and cleavage. With Csy4 processing, the hairpin Csy4 recognition site remains at the 3′ end of the
pegRNA as an extension. At the same time, mutation of the fourth one of the consecutive uracils (highlighted in purple) was introduced to the scaffold of
pegRNA. The Csy4 recognition site sequence is highlighted in green. (D) An engineered pegRNA with a structured RNA pseudoknot (mpknot), protects its
3′ extension from degradation by exonucleases. The mpknot is a frameshifting pseudoknot from Moloney murine leukemia virus (M‐MLV), and it is an
endogenous template for the M‐MLV‐RT from which the RT in canonical prime editors was engineered, raising the possibility that mpknot might help recruit
the RT. The mpknot sequence is highlighted in pink. (E) An engineered pegRNA with a structured RNA pseudoknot evopreQ1, which protects the 3′ extension
from degradation by exonucleases. evopreQ1, as a modified prequeosine1‐1 riboswitch aptamer composed of 42 nucleotides (nt) in length, is one of the
smallest naturally derived RNA structural motifs with a defined tertiary structure. The evopreQ1 sequence is highlighted in dark slate. (F) A representative
engineered epegRNA with MS2 and f6 RNA aptamers. esgRNA, enhanced sgRNA with modifications highlighted in green. RNA aptamers can recruit their
respective effector proteins for efficient gene editing. The MS2 sequence is highlighted in orange. The f6 sequence is highlighted in purple.
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achieve accurate single base editing at any target sites in the
genome. (ii) Widen the width of the editing window of BE for
saturation mutation studies such as de novo domestication or
DE to generate novel gene resources or germplasm in plants.
For example, fusion of T7 RNA polymerase with different de-
aminases (cytidine and adenosine deaminase), substantially
widens the mutational spectrum in mammalian cells (Cravens
et al., 2021). In addition, engineering BEs fused with additional
chromatin modulating peptides, such as pioneer factor SOX2
(SRY‐box transcription factor 2), to initiate chromatin unfolding
and stimulate transcription, could be a promising strategy to
further increase base editing efficacy (Yang et al., 2022).

Optimization of PEs
A series of parameters such as stable and properly folded
pegRNAs, effective assembly of the PE‐pegRNA complex,
and more active reverse transcriptase are essential for effi-
cient prime editing. In PE, the canonical pegRNA consists of
a sgRNA, a RTT and a PBS (Figure 2A). PBS and RTT at the
3′‐terminal of pegRNA are easy to partially degrade by ex-
oribonucleases inside the cells, resulting in truncated
pegRNAs (Feng et al., 2022; Nelson et al., 2022). The trun-
cated pegRNAs can still search and recognize the target
sites, but not be able to complete the correct editing due to
loss of the PBS or RTT‐PBS (Nelson et al., 2022). Adding a



PEs, especially PE, are not widely used or even impossible in
the polyploid species and agriculturally important food crops
such as common wheat due to its complex hexaploidy ge-
nome, gene redundancy, as well as relatively lower trans-
formation efficiency (Li et al., 2021c). Third, for base editing and
prime editing in different plant species, we suggest using the
aforementioned optimized strategies in combination with a
stronger promoter to drive the expression of both nCas‐
deaminase and the sgRNA for BE, or nCas‐M‐MLV‐RT and
pegRNA for PE, respectively (Li et al., 2022b). Finally, it is worth
noting that the innate nature of target genes may affect the
editing outcomes of both BEs and PEs in plants; for example,
some genes or targets could only be edited at a very lower
efficiency or even not be accessible (Hua et al., 2022).
Understanding the potential mechanism underlying this phe-
nomenon will certainly benefit the precision genome editing of
any targets at will in a user‐defined manner in plants. Never-
theless, following the continuous endeavors on optimization of
BE and PE as well as engineering a novel generation of BE and
PE, we envision that both BEs and PEs will become the routine
and customized precise gene editing tools for both plant fun-
damental research and crop improvement in the near future.
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